229 research outputs found

    Extension of the operational lifetime of the proportional chambers in the HERMES spectrometer

    Get PDF
    Abstract The experience of the extension of the proportional chambers lifetime at the HERMES (DESY) experiment is presented. A non-invasive technique against the aging process while continuously operating the detectors in the gap of the HERMES spectrometer magnet was performed. It was found that adding 0.14% water to the 65%Ar+30%CO2+5%CF4 gas mixture perfectly cancelled the appearance of self-sustained current (Malter effect). The studies of the remedy for the lifetime extension were performed with the test prototypes of the original proportional chambers. For the complete recovery of the aged test proportional chambers a special training method was developed as well. Training of the aged proportional chamber at 80%CF4+20%CO2 mixture glow discharge with reversed high voltage demonstrated a complete recovery of the detector

    Towards a Low-SWaP 1024-beam Digital Array: A 32-beam Sub-system at 5.8 GHz

    Full text link
    Millimeter wave communications require multibeam beamforming in order to utilize wireless channels that suffer from obstructions, path loss, and multi-path effects. Digital multibeam beamforming has maximum degrees of freedom compared to analog phased arrays. However, circuit complexity and power consumption are important constraints for digital multibeam systems. A low-complexity digital computing architecture is proposed for a multiplication-free 32-point linear transform that approximates multiple simultaneous RF beams similar to a discrete Fourier transform (DFT). Arithmetic complexity due to multiplication is reduced from the FFT complexity of O(NlogN)\mathcal{O}(N\: \log N) for DFT realizations, down to zero, thus yielding a 46% and 55% reduction in chip area and dynamic power consumption, respectively, for the N=32N=32 case considered. The paper describes the proposed 32-point DFT approximation targeting a 1024-beams using a 2D array, and shows the multiplierless approximation and its mapping to a 32-beam sub-system consisting of 5.8 GHz antennas that can be used for generating 1024 digital beams without multiplications. Real-time beam computation is achieved using a Xilinx FPGA at 120 MHz bandwidth per beam. Theoretical beam performance is compared with measured RF patterns from both a fixed-point FFT as well as the proposed multiplier-free algorithm and are in good agreement.Comment: 19 pages, 8 figures, 4 tables. This version corrects a typo in the matrix equations from Section

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction at the current fragmentation

    Full text link
    It is shown that the recent HERMES data on the transverse Λ0\Lambda^0 polarization in the inclusive quasi-real photoproduction at xF>0x_F>0 can be accommodated by the strange quark scattering model. Relations with the quark recombination approach are discussed.Comment: 5 pages, 3 figures, accepted by Eur. Phys. J.

    Statistical approach for unpolarized fragmentation functions for the octet baryons

    Full text link
    A statistical model for the parton distributions in the nucleon has proven its efficiency in the analysis of deep inelastic scattering data, so we propose to extend this approach to the description of unpolarized fragmentation functions for the octet baryons. The characteristics of the model are determined by using some data on the inclusive production of proton and Λ\Lambda in unpolarized deep inelastic scattering and a next-to-leading analysis of the available experimental data on the production of unpolarized octet baryons in e+ee^+e^- annihilation. Our results show that both parton distributions and fragmentation functions are compatible with the statistical approach, in terms of a few free parameters, whose interpretation will be discussed.Comment: 14 pages, 7 eps figures, to appear in Phys. Rev.

    Transverse-target-spin asymmetry in exclusive ω\omega-meson electroproduction

    Get PDF
    Hard exclusive electroproduction of ω\omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive πω\pi\omega transition form factor.Comment: DESY Report 15-14

    Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets

    Get PDF
    A measurement of beam-helicity asymmetries for single-hadron production in deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV electrons and positrons off gaseous hydrogen and deuterium targets were collected by the HERMES experiment. The asymmetries are presented separately as a function of the Bjorken scaling variable, the hadron transverse momentum, and the fractional energy for charged pions and kaons as well as for protons and anti-protons. These asymmetries are also presented as a function of the three aforementioned kinematic variables simultaneously
    corecore